Featured

    Featured Posts

    Social Icons

Loading...

Download Ebook Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili

Download Ebook Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili

Machine Learning Mit Python Und Scikit-Learn Und TensorFlow: Das Umfassende Praxis-Handbuch Für Data Science, Predictive Analytics Und Deep Learning (mitp Professional), By Vahid Mirjalili neigt Buch bezeichnet wird, nicht nur von dieser Website. Viele Leute haben bestätigt, dass es ihnen wirklich funktioniert. Wie genau ist mit dir? Solange das gewünschte Motiv und Thema, das Sie ace bezieht sich auf das, was diese Veröffentlichung besteht, wird es Ihnen helfen wirklich. Bewältigung der Probleme kann in Betracht durch zahlreiche Ressourcen genommen werden. Die Aufmerksamkeit auf die verschiedenen anderen Führung ist wichtig. Aber immer die Realitäten und auch Motivationen aus den schriftlichen Quellen und der Fachmann wird sicherlich tatsächlich beendet werden.

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili


Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili


Download Ebook Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili

Dennoch erfordern brandneue Ideen, um Ihre Ausgaben zu decken und zu beheben? Ist Ihr Problem für Unternehmen, Aufgabe Fälligkeitsdatum, das Leben, Institutionen oder andere zu tun? Selbstverständlich sind alle Individuen werden sicherlich sind solche Probleme, die sie immer wieder machen fantastische Bemühungen führen kann. Um Ihnen zu helfen, werden wir sicherlich einen Gott Veröffentlichung teilen, um zu überprüfen. Höchstwahrscheinlich wird es Ihnen sicherlich helfen, bestimmte Probleme zu lösen, die Sie mit zur Zeit beschäftigen. Das ist die Soft-Daten Machine Learning Mit Python Und Scikit-Learn Und TensorFlow: Das Umfassende Praxis-Handbuch Für Data Science, Predictive Analytics Und Deep Learning (mitp Professional), By Vahid Mirjalili, wie vorgeschlagen Buch auf dieser Seite heute.

Es gibt viele Bücher, die die Art und Weise für das Erreichen der bessere Zukunft sein können. Es wird sicherlich ebenfalls enthält die verschiedene Themen von literarischer Fiktion, socials, Wirtschaft, Religion, Vorschriften und vielen anderen Publikationen. Wenn Sie verwirrt sind unter Führern zu wählen, könnten Sie versuchen, Machine Learning Mit Python Und Scikit-Learn Und TensorFlow: Das Umfassende Praxis-Handbuch Für Data Science, Predictive Analytics Und Deep Learning (mitp Professional), By Vahid Mirjalili Ja, diese Publikation endet ein viel beraten Buch zu sein, dass viele Menschen lieben es, in jedem Zustand zu überprüfen.

If you could see just how the book is advised, you may have to know that writes this book and also release it. It will really affect the how people will be appreciated to read this publication. As right here, Machine Learning Mit Python Und Scikit-Learn Und TensorFlow: Das Umfassende Praxis-Handbuch Für Data Science, Predictive Analytics Und Deep Learning (mitp Professional), By Vahid Mirjalili can be acquired by searching for in some stores. Or, if you wish to get very easy as well as quick way, just get it in this website. Below, we not just provide you the convenience of reviewing material, yet additionally quick way to get it. When you require some days to wait to get guide, you will certainly obtain the fast respond right here.

It is not just to provide you the very easy method however additionally to get the book is soft data systems. This is the reason you could get guide immediately. By connecting to internet, your possibility to discover and get the Machine Learning Mit Python Und Scikit-Learn Und TensorFlow: Das Umfassende Praxis-Handbuch Für Data Science, Predictive Analytics Und Deep Learning (mitp Professional), By Vahid Mirjalili immediately. By clicking link that is proffered in this site, you can most likely to straight guide website. And also, that's your time to get your favorite book.

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili

Über den Autor und weitere Mitwirkende

Sebastian Raschka verfügt über jahrelange Erfahrung in der Python-Programmierung und leitete mehrere Seminare über praktische Data-Science-Anwendungen, Machine Learning und Deep Learning u.a. auf der SciPy-Konferenz. Vahid Mirjalili erforscht Anwendungen des Machine Learnings in verschiedenen Computer-Vision-Projekten (»maschinelles Sehen«) am Fachbereich für Informatik und Ingenieurswesen an der Michigan State University.

Produktinformation

Broschiert: 584 Seiten

Verlag: mitp; Auflage: 2. überarbeitete Auflage 2018 (22. Dezember 2017)

Sprache: Deutsch

ISBN-10: 3958457339

ISBN-13: 978-3958457331

Größe und/oder Gewicht:

16,9 x 3,2 x 23,8 cm

Durchschnittliche Kundenbewertung:

5.0 von 5 Sternen

2 Kundenrezensionen

Amazon Bestseller-Rang:

Nr. 100.090 in Bücher (Siehe Top 100 in Bücher)

Ich hatte bereits die 1. Auflage von Sebastian Raschka rezensiert und gelobt. Ich nutze das Buch, nun in der zweiten Auflage, für meine Lehre im Bereich Data Science / Machine Learning. Die zweite Auflage ist überarbeitet und vom hinzugekommenen Co-Author, Vahid Mirjalili, um weitere Kapitel ergänzt worden. Die neuen Kapitel erklären die künstlichen neuronalen Netze noch mehr im Detail und führen - erst mit Code und dann mit Prinzip-Erklärungen - in TensorFlow ein.Der große Vorteil des Buches ist der richtige Mix aus mathematischen Erklärungen, Erklärungen mit Programmierbeispielen ohne Bibliothek (abgesehen von numpy, pandas...) und Programmierbeispielen mit den ML-Bibliotheken Sklearn und (nun ab der 2. Auflage) TensorFlow.Sehr gut! Klare Empfehlung!

Ich habe bereits die erste Auflage des Buches gelesen und hab jetzt auch die zweiteAuflage gelesen, und konnte mir einen Einblick darüber machen, was sich soalles verändert hat.Was steht drin------------------Die zweite Auflage unterteilt sich in 16 Kapiteln, die insgesamt 585 Seiten umfassen.Im Vergleich zur Vorauflage sind drei Kapitel und über 150 Seiten dazu gekommen.Die ersten Kapitel beginnt mit den Grundlagen des maschinellen Lernens. So wirdzu Beginn auf die drei verschiedenen Arten des Lernens eingegangen und an Hand vonBeispielen erläutert. Anschließend geht es zügig weiter und man programmiert denersten Lernalgorithmus. Im dritten Kapitel wird in die Bibliothek scikit-learn eingeführt,womit weiterführende Lernalgorithmen implementiert werden. Im vierten und fünftenKapitel geht es anschließend um die Datenvorverarbeitung sowie die Datenkomprimierung.Die ersten fünf Kapitel dienten dazu die Grundlagen zu vermitteln. Ab dem sechstenKapitel geht es an die tiefergehenden Themen, die allerdings ebenfalls für einerfolgreiches Einsetzen von Machine Learning Verfahren in der Praxis benötigt werden.Das sechte Kapitel behandelt etwa die Best Practices zur Modellbewertung sowiedie Abstimmung von Hyperparameter. Weiter geht es im siebten Kapitel mit der Kombinationverschiedener Modelle für das Ensemble Learning. Das achte Kapitel beinhaltetein Praxisbeispiel um die Stimmungslagen zu analysieren, wo Verfahren des NaturalLanguage Processings verwendet werden.Während in der ersten Hälfte des Buches vor allem „einfache“ Skripte geschriebenwerden, wird sich im neunten Kapitel mit einem Praxisbeispiel beschäftigt, wie maneine Webanwendung schreibt, die ein Machine-Learning-Modell eingebettet hat. Daszehnte Kapitel befasst sich anschließend mit der Vorhersage stetiger Zielvariablendurch Regressionsanalyse gefolgt vom 11. Kapitel zur Clusteranalyse mit nichtvorher klassifizierten Daten. Im zwölften Kapitel geht es anschließend um die Implementierungeines künstlichen neuronalen Netzes.Ab dem 13. Kapitel beginnen die neuen Kapitel, die nicht in der ersten Auflagevorhanden waren. So erfolgt in diesem Kapitel die Einführung in TensorFlow. Dabeiwird sowohl auf TensorFlow als auch auf die Bibliothek Keras eingegangen. Währenddas Kapitel eher als Einstieg in TensorFlow diente, geht es im 14. Kapitel um diedetaillierte Funktionsweise von TensorFlow. Das Buch schließt mit einem Kapitelüber die Klassifizierung von Bildern, sowie einem Kapitel über die Modellierungsequenzieller Daten durch rekurrente neuronale Netze ab.Kritik------Das Buch ist im Vergleich zur ersten Auflage noch umfangreicher geworden. Das bereitsdicke Buch ist also noch dicker geworden, durch die Hinzunahme von weiteren drei Kapiteln.Die ersten zwölf Kapitel sind im wesentlichen gleich geblieben, zumindest habeich keine sehr großen Änderungen beim drüberlesen feststellen können. Interessanterwaren da die neuen Kapitel, die sich endlich mit TensorFlow ausseinandersetzen,was heutzutage ja schon der Defacto Standard sein dürfte. Das Buch ist definitivnichts für Einsteiger. Um möglichst wenig separat nachlesen zu müssen, ist es sehrvorteilhaft und empfehlenswert schon Erfahrungen in der Entwicklung mit Pythonzu besitzen. Aus dem Bereich des Machine Learnings sind ebenfalls Vorkenntnissesinnvoll, aber nicht zwangsläufig notwendig.Das Buch ist von zwei Wissenschaftlern geschrieben und das merkt man auch. So sindviele Formeln enthalten, die ich garnicht erst versucht habe, nachzuvollziehen.Am allgemeinen Verständnis hat es daran aber auch nicht geschadet, sodass man diesegetrost überspringen kann, sofern man höhere Mathematik nicht gewohnt ist.Ich für meinen Teil konnte aus diesem Buch diverse Informationen herausziehen dieich auch in der Praxis anwenden konnte. So konnte ich viele Informationen und Beispielefür meine Masterarbeit verwenden, wo es ebenfalls um die Anwendung von Machine LearningVerfahren ging. So brachte das Buch eine umfassende Hilfestellung von derDatenvorverarbeitung über die Implementierung, Testen und Validierung der Ergebnisse.Ein Punkt finde ich bei diesem Buch aber verbesserungswürdig: Die Nutzung von Kerasund TensorFlow erfolgt erst in den „neuen“ Kapiteln und nicht in den vorherigen.Dort wird noch scikit-learn verwendet. Für das Beibringen von den Grundlagen istdies zwar auch in Ordnung. Einfacher wäre es aber, auch dort bereits TensorFlowund Keras zu verwenden, damit man als Leser sich nicht gleich mit zwei bzw. dreiBibliotheken beschäftigen muss, wenn scikit-learn nicht in der Praxis am Endeverwendet werden soll.

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili PDF
Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili EPub
Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili Doc
Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili iBooks
Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili rtf
Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili Mobipocket
Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili Kindle

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili PDF

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili PDF

Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili PDF
Machine Learning mit Python und Scikit-Learn und TensorFlow: Das umfassende Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning (mitp Professional), by Vahid Mirjalili PDF
author

This post was written by: Author Name

Your description comes here!

Get Free Email Updates to your Inbox!

Posting Komentar

CodeNirvana
© Copyright coisasdemoedas
Back To Top